
Improving Literature Preselection
by Searching for Images

Brigitte Mathiak1, Andreas Kupfer1, Richard Münch2,
Claudia Täubner1, and Silke Eckstein1

1 Institut für Informationssysteme, TU Braunschweig, Germany
{b.mathiak, a.kupfer, c.taeubner, s.eckstein}@tu-bs.de

2 Institut für Mikrobiologie, TU Braunschweig, Germany
r.muench@tu-bs.de

Abstract. In this paper we present a picture search engine for life science liter-
ature and show how it can be used to improve literature preselection. This pres-
election is needed as a way to compensate for the vast amounts of literature that
are available. While searching for DNA binding sites for example, we wanted
to add the results of specific experiments (DNAse I footprint and EMSA) to our
database. The preselection via abstract search was very unspecific (150 000 hits),
but by looking for paper with images concerning the experiments, we could im-
prove precision immensely. They are displayed like hits in a search engine, allow-
ing easy and quick quality assessment without having to read through the whole
paper. The images are found by their annotation in the paper: the figure caption.
To identify that, we analyse the layout of the paper: the position of the image and
the surrounding text.

1 Introduction

Preselection is a necessary step in literature annotation, to cope with the large amounts
of literature available. The literature is selected to cover topics of interest, the more
specific the better, so less paper have to be read. Preselection is usually done by keyword
search on abstracts eg. via the search engine on PubMed [1].

The PRODORIC database [2] contains very special data like DNA binding sites of
prokaryotic transcriptional regulators. This data is generated via specific experiments
like DNAse I footprints or ElectroMobility gel Shift Assays (EMSA) that are gener-
ally not mentioned in the abstracts of scientific literature. The search for general key
words classifying this comprehensive field like ”gene regulation”, ”promoter” or ”bind-
ing site” results in over 150,000 hits, and even with additional refinement only 10-20%
contain appropriate data. Therefore it is necessary to screen all the hits manually to ob-
tain literature references suitable for database annotation. Of these, those are especially
valuable that contain pictures of the DNAse I footprint or EMSA assay, because they
represent verified information of high quality. This quality assessment can be important
on further exploration of the subject.

The special problem posed by this experimental data, is that keywords searches in
abstracts or even full text are ambiguous. The experimental procedures are rarely men-
tioned in the abstract and in the full text, experimental methods belonging to the overall

E.G. Bremer et al. (Eds.): KDLL 2006, LNBI 3886, pp. 18–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving Literature Preselection by Searching for Images 19

topic are often referenced eg. in literature overview. By using the figure captions we can
accurately find pictures for each experiment.

It has already been shown that some of the defining information of a publication is
not mentioned in the abstract. Obviously, more information can be obtained by search-
ing through full text paper [3], though precision has decreased. In [4], a competition in
literature annotation, it has been observed that analyzing the figure caption is of great
value to improve the precision. Classifying the different sections of a paper to analyse
them seperately has been successfully attempted in [5], but curiously, the figure captions
have not been examined in this study.

A scientific document is more complex than it seems. Readers can easily deduce
structure and semantics of the different characters and pictures on a page. But most of
this structure information is not stored and available when accessing the publication as
PDF, without the competence of a human reader.

The basic problem of handling PDFs is that the text information is not freely avail-
able. While an HTML file stripped of its tags usually delivers legible text, even the
simple task of text extraction from a PDF is rather complicated. Down to the basics,
PDF is foremost a visual medium, describing for each glyph (= character or picture)
where it should be printed on the page [6]. Most PDF converters simply emulate this
glyph-by-glyph positioning in ASCII, HTML or any other formats [7], but information
about reading order and overall semantic connection of the text is lost. Still, since the
position of all glyphs is known, the original layout can be deduced and the semantical
connection can be restored.

For HTML, the layout information has successfully been used to improve the classi-
fication of web pages [8]. We extract the same layout information for PDF documents.
To prove the viability of our approach, we used the layout information to implement
a special search for PDF embedded pictures in scientific publications. Since the figure
captions contain much information about the figure, we implemented a search engine,
similar to Google Images, to find images not in regular HTML web pages, but in PDFs.
We use layout information to associate the picture with the caption. So, if the user
wishes to find pictures containing UML-diagramms, he can just enter ”UML” to find
what he needs.

The paper starts by giving a general overview over the technology used. In section 2,
we demonstrate the general workflow of the search engine. Section 3 gives more details
about the internal PDF structure. Section 4 describes how the text is put into PDF and
how it can be extracted again, while maintaining the layout information. In section 5
we explain the same process for images and section 6 describes image and text com-
ing together as figure and caption. Section 7 finally contains the results we had in our
evaluation with the biological data. In the last section we draw some conclusions and
discuss further improvements on our search engine.

2 CaptionSearch

We start with a simple technical overview of how the picture search engine works. The
process consists of 6 steps from the download to the actual query execution (see Fig. 2),
all of them are currently implemented in Java.

20 B. Mathiak et al.

C
caption
identifyingB

picture
extraction

A
text
extraction

1. download 3. XML 4. index files

6. executing
 user queries

2. caption extraction

5. webserver

 literature

Fig. 1. Overview of the CaptionSearch dataflow

Step 1 is straightforward downloading any kind of literature that might be interesting
into a file pool. The technical details of step 2 were mainly already given before. In
order to allow for future extensions, we split the process into three parts. Part A works
like any PDF to text converter and in fact is based on the Java converter PDFBox [9].
We did a few changes, like refining the coordinate calculations and changing the space
detection algorithm. We also keep a lot of the meta-information that is usually lost in
the process, like the bounding boxes of all the text blocks, the fonts and font sizes. That
information could also be used by a different algorithm.

Part B extracts the pictures into files and adds fake picture text blocks that contain
information on the position of the picture and the filename as a link. In part C we
perform the algorithm outlined in section 6 to get pairs of picture blocks and text blocks
for each pdf.

In step 3 these pairs are written to an xml file (see example below).

1 <?xml version="1.0"
encoding="iso-8859-2"?>

2 <pdf src="10094677.pdf">
3
4 <caption>FIG. 4. DNase I

footprint analysis of ...
5 </caption></pdf>

Each publication is represented by one file containing a PDF element (line 2-5), which
may contain many image elements (like the one in line 3-5), which have the link to the
picture as an attribute (line 3) and the caption as a further element (line 4-5).

In Step 4 we use the Digester package [10] to extract the information from the xml
files into the indexer. For each figure a virtual document is put into the indexer contain-
ing the figure caption to be indexed and the image link and pdf link as metainformation.
For the indexing itself, we use the Lucene package [11], which offers fast, Java-based
indexing, but also some additional functionality, like a built-in query parser and several
so-called analyser that allow us to vary how exactly the captions are indexed and what
defines a term.

Improving Literature Preselection by Searching for Images 21

Fig. 2. A screenshot from our search engine

For step 5 we set up a Tomcat webserver [12], using Java servlets [13] to produce the
website and to present the query results. In step 6, all queries are executed by a servlet
that uses Lucene to fetch the results from the index files and builds a new web page to
display the results according to the pre-selected schema.

22 B. Mathiak et al.

3 PDF Structure

Before we start discussing the actual text and picture extraction in the sections 4 and 5,
we first have to explain some basics about PDF and how its raw data structure works
like. PDF documents are all organized the same way: a header, objects and a trailer. The
header contains information about the PDF version. The trailer is a bit more complicated
containing structural information such as the length of the document, a reference to the
root object, and more. Everything else like text information, fonts, images and struc-
turing information is encoded into objects. The two objects (see example below) are
structured into an object designation (line 1 and 9), that gives the number the object can
be referenced with and object data. Line numbers are included for readability. The data
is often proceeded by a dictionary (lines 2-4) that gives additional information about
the data.

1 1 0 obj
2 << /Length 2 0 R
3 /Filter /FlateDecode
4 >>
5 stream
6 inserted here are 108 bytes of data
7 endstream endobj
8
9 2 0 obj
10 108
11 endobj

In line 2 the length of the stream is determined by referencing the second object with
the ID 2 0 in line 9 that contains 108 as its data (line 10). In line 3 information is
given on how the following stream can be decoded. There are a number of possibilities,
FlateDecode is the most common and identical to ZIP [14]. The semantics of the
decoded stream depend on the function of the object given by the context the object is
referenced in or given explicitly in the dictionary.

The overall structure of the document is mostly hierarchical. The root object, which
is given in the trailer, references a pages container object, which references the pages
and so on. Mutual information may be shared by referencing the same object several
times. The objects are all readable from all objects and may not contain other objects
only reference them. Hencefore, the order of the objects does not matter, as all are treated
in the same way. The number of objects in the document varies depending on the way it
was produced: an average 5 pages document may contain between 20 and 300 objects.

4 Text in PDF

When looking for captions, we first have to analyse all the text that is on the page. For
that, we have to take the page object (like the one in the example before) and decode the
text stream (the binary code in line 6), the result is a chain of commands that describes
the text to be written on that page. The above example shows a short sample taken from
a real PDF:

Improving Literature Preselection by Searching for Images 23

1 BT
2 8 0 0 8 52 757.35 Tm
3 /F2 1 Tf
4 0 -1.706 TD
5 (page 354)Tj
6 T*
7 [(J) -27 (OURN) 27 (AL) -378 (1)]TJ
8 ET

By convention, the parameters of a command are written before the command and
all commands are abbreviated to two letters. All text-related commands are between a
BT (line 1) and an ET (line 8) which stands for Begin Text and End Text, respectively.

There are 3 different matrices that keep track of the current writing position. The
matrices are given as 6 values, like the values in line 2. The first four represent a rotation
matrix. The rotation matrix can be used to write landscape text or up-side-down. Also
it gives scaling parameters, which are multiplied with the actual fontsizes. The next 2
values give the position on the paper in pixels. The matrix that is set in line 2 with
the Tm (set Text matrix) command is the text matrix. The other two matrices are the
transformation matrix, which can be set outside the BT-ET environment to move whole
text passages and the CTM (Current Transformation Matrix) that is supposed to keep
track of the beginning of the line to enable carriage return.

The font size can be set either by the scaling of the matrix or directly when setting
the font. The command Tf (see line 3) has two parameters, first the font object, here ref-
erenced by name, and the font size. Although the font size is set to 1pt the matrix scales
it up to 8pt. In the next line line spacing is defined in text matrix coordinate system,
the next line is supposed to start 1.706 times the current font size below the start of the
current line. There are also possibilities to define word spacing and character spacing.

In line 5 at last text is written to the screen. The Tj command has a string parameter.
Strings are denoted by the brackets around them. The text is now written, using the
current matrices and the chosen font. The T* in line 6 marks a carriage return. The text
matrix is set to the CTM that stored the coordinates from the beginning of the line. Then
the line padding operation as defined in line 4 is executed and the CTM is set to this
new coordinates.

In line 7 the second line of text is written. The TJ command, opposing to the Tj
command, allows ligatures inside the string. The numbers between the strings modify
the horizontal space between the letters. Contra-intuitively, positive numbers mean less
space, while negative numbers mean more space. A very large negative number, like
the -378 in the example can even be used to produce a space between the words without
using the space literal. Since every kind of movement can be such an implicit space or
carriage return, we need some algorithm to decide which one is which.

For indexing purposes it is vital to identify correct word borders, otherwise terms
may be glued together or torn apart. In those cases it is not possible to find the terms
anymore. Unfortunately, the spaces are sometimes not given directly, but instead the
characters are just a little more apart from each other than usual. The problem sharpens
as theoretically all characters can be written in any kind of order by jumping around
with explicitly set coordinates.

24 B. Mathiak et al.

In order to identify the spaces anyway, our first run through the text stream just
extracts the characters one by one and calculates their bounding boxes. Then the differ-
ence vector xdiff between two adjacent characters is calculated and rotated in writing
direction R.

rotationmatrix R =(
xold, right − xold, left yold, right − yold, left
−yold, right + yold, left xold, right − xold, left

)

xdiff = (xnew, left − xold, right)
R
|R|

The resulting vector is compared to the current modified font size to determine
whether this is a space, no space, carriage return or a new block of text. Next, the
blocks are sorted and go through a similar procedure. This way the initial information
about the order is conserved best.

The blocks bounding boxes are conserved to allow further investigation of their lay-
out, also all changes in fonts or font size and all lines are denoted with their own bound-
ing boxes.

Additional problems which arise are: text overlaps, when e.g. a special font is used
to write the accent over à that overlaps the original a and the overall handling of non-
identifiable fonts and fonts that give wrong bounding boxes.

5 Images in PDF

Since we want to present the picture along side with the caption, we need to do two
things: firstly, we have to know where the image is and secondly, we have to extract the
image into a standard readable image format.

The images themselves are stored in so called XObjects. From the text stream an
XObject can be called by using the command Do (execute the named XObject).

1 22 0 obj
2 << /Type /XObject
3 /Subtype /Image
4 /Name /Im3
5 /Width 580
6 /Height 651
7 /BitsPerComponent 8
8 /ColorSpace /DeviceGray
9 /Length 31853
10 /Filter /DCTDecode>>
11 stream ... endstream endobj

This example object represents an image that can be called by entering Im3 Do into the
text stream. What happens then is that the object called Im3 is identified and executed.
From the object dictionary, we can gain some information like width (line 5) and height
(line 6), although this information might not be acurate. The true hight and width are
calculated and give, together with the current position the bounding box of the picture.

Improving Literature Preselection by Searching for Images 25

To actually extract the picture, we need the filter (as given in line 10), in this case
DCTDecode, which is the PDF name for Jpeg encoding [15]. The stream simply con-
tains the a jpg-file that can be copied out without further modifications.

Aside from this case, there are a number of possible complications. Natively, all im-
ages are given as raster images, like a BitMap. Width and height are given to determine
the dimensioning of the raster, BitsPerComponent (see line 7) give the color depth. The
Colorspace (given in line 8) maps the colors to the RGB values they are painted in. For
filters, there are a number to chose from, some of those are quite old and unfortunately
not all have open source libraries to convert them to more publicly known formats. Also
it is possible for an image to consist of drawing instructions in the PDF text stream lan-
guage or they can be inserted in PostScript language.

Since a relatively high number of pictures can not be extracted easily, our next idea
is to use a third-party application to extract the pictures seperately. We would then try to
match the coordinates given by the program with coordinates of our own. Unfortunately,
this is still in prototype phase.

6 Finding the Caption

What we have at this point is the converted text (see section 4), together with its bound-
ing boxes and the pictures with their bounding boxes (see section 5). The next step is to
find out which text belongs to which picture.

To achieve this, every text block is weighted according to 2 factors: ydiff, the y-
proximity in pixels from the bottom line of the picture and xdiff , the x-proximity from
the left border of the picture. The weighs were chosen by try-and-error. The following
formula produced no avoidable errors in the test set.

weight ω = 10ydiff + xdiff

In order to find captions that are next to the figure or above it, we also introduced a
semantic criterium. Figure captions do traditionally begin with ”Figure 1:” or something
similar. The block that we found with the method described above, is first checked
whether or not it has such a denotation. If not, we look at the other blocks in proximity
and check them. If there is no ”Figure”-block to be found, we stick with the block right
below. This is the case, for example, when the caption is prefaced with a filler (dots or
a special symbol), or when the image is not scientifical, like for example a logo.

Finding the end of the caption is much less deterministic. Fortunately, most captions
have a significant gap before the main text begins again. Also, normally captions are
single-column even if the text is two-column. Although we do keep track of the font
and the captions are usually written in another font, we do not use this information,
since there are just too many publications, that do use the same font and font size for
both purposes. Instead we keep strictly to the layout information on where an untypical
large gap between line is.

7 Results

In the last few years, the number of biological databases has grown exponentially, from
548 in January 2004 to 719 in January 2005 [16]. Yet, one of the most time-consuming

26 B. Mathiak et al.

tasks when setting up new databases is the annotation of literature. This time is sup-
posed to be minimized by a suitable preselection. There already exist a number of
very interesting search engines. Via PubMed [1], for example, most of the recently
written abstracts in life science can be searched. Unfortunately, abstracts often do not
mention the exact methods that were used, so for databases that contain experimental
data, like the PRODORIC database [2], literature annotation becomes the proverbial
search for the needle in the haystack.

Out of 188 papers that were known to contain information about DNA binding sites,
170 did contain extractable pictures. All in all there were 1416 pictures in the PDFs
of which 586 could not be extracted using our algorithm from section 5, but since we
could identify their position, we indexed the caption anyhow. The relatively high num-
ber of pictures attributes mostly to the fact that some PDF producing programs use
pictures for symbols like list bullets. A random sample of 236 captions showed that
15% of the found captions were just random text pieces, like page numbers or sin-
gle sentences, mostly due to the said symbol pictures. 6% were wrong text that means
whole paragraphs of text, just not belonging to the figure. The main reasons here were
again symbol pictures, which naturally had no genuine caption and also some cases of
figure captions written left or right of the picture. We had 3 cases of duplication, where
one figure was internally composed of several pictures, all of which rightly claimed the
same caption. We had text conversion problems with only 3 out of these 236 captions.
In one no spaces were found, in the second one, some spaces were missing and in the
third one some symbols like ∆ converted into wrong strings. We had only one case,
where the end of the caption was not found correctly. We counted 195 genuine figures
in the sample, of which 189 had correctly identified captions. We are still working on a
way to sort out which of the images belong to a genuine figure-caption pair and which
do not. For a summary confer table 1.

Table 1. Results of Evaluation

No. of paper No. of papers containing pictures
188 170 (90%)

No. of pictures No. of extractable pictures
1416 830 (59%)

No. of captions short text wrong wrong
in sample pieces text conversion

236 37 (15%) 17 (7%) 3 (1%)

No. of genuine No. of correctly identified captions
figures in sample to those figures

195 189 (97%)

To search for DNAse I footprints, we used the keywords ”footprint”, ”footprinting”
and ”DNAse”. Overall, 184 hits were scored of which 163 actually showed experimen-
tal data. As a byproduct, the thumbnails mostly sufficed to make a fast quality assess-
ment. Another positive effect was that the data was much faster available than with the
usual method of opening each PDF independently.

Improving Literature Preselection by Searching for Images 27

The search for EMSAs was a little bit more difficult, since there exist a wide range of
naming possiblities. The most significant terms in those names were ”shift”, ”mobility”,
”EMSA” and ”EMS” to catch ”EMS assay”. We had 91 hits of which 81 were genuine.

Recall could not be tested thoroughly, due the sheer numbers of pictures and the
limited time of experts, but the random sample did not include pictures that would not
have been found by the keywords, which suggests a rather high recall.

We are still in an early test phase with the user acceptance. For legal reasons we
cannot just put the information on the Web and see what is coming, but instead, we
only have our local biologist work group as users, who supply us with the literature
anyway.

8 Conclusion and Future Work

Although we have just started to explore the possibilities of layout-enhanced analysis
of PDF files, our first application looks promising. To bypass the legal problems posed
by the copyrights, we plan on publicising a demo version, that does not link to the full
text, but to the PubMed entry instead. We also plan to cross-check whether or not the
full texts are available on the Internet and then give appropriate addresses, so users can
download from the source. This demo version should then be able to give some data
about user behaviour.

We are in process of finding more areas of application for our search engine, as
we broaden our spectrum of functionalities, especially those mentioned in the sections
above, like finding the context a certain figure is mentioned in (eg. ”...as you can see in
Fig. 2...”) to add more text to be searched through and be presented to the user and the
extraction of more pictures.

The groundwork of knowing the layout of the publication can also be used for other
purposes. On long term, we are working on reading order recognition to improve shal-
low parsing, which is still a problem in text mining applications [17]. Also, we are
investigating the feasibility of a ”table search engine” similar to what has already been
investigated by [18] for HTML web pages. The overall goal is to make PDF a multi-
functional format that can easily be used with any kind of text mining application, just
as easily as HTML or plain text.

References

1. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/ (2004)
2. Münch, R., Hiller, K., Barg, H., Heldt, H., Linz, S., Wingender, E., Jahn, D.: Prodoric:

prokaryotic database of gene regulation. Nucleic Acids Research 31(1) (2003) 266–269
3. Faulstich, L.C., Stadler, P.F., Thurner, C., Witwer, C.: litsift: Automated text categorization

in bibliographic search. In: Data Mining and Text Mining for Bioinformatics, Workshop at
the ECML / PKDD 2003. (2003)

4. Yeh, A., Hirschman, L., Morgan, A.: Evaluation of text data mining for database curation:
lessons learned from the kdd challenge cup. Bioinformatics 19(1) (2003)

5. Shah, P., Perez-Iratxeta, C., Bork, P., Andrade, M.: Information extraction from full text
scientific articles: Where are the keywords? BMC Bioinformatics (2003)

28 B. Mathiak et al.

6. Adobe Network Solutions: PDF Reference Fourth Edition.
http://partners.adobe.com/asn/acrobat/sdk/publicdocs/PDFReference15 v6.pdf (2004)

7. BCL: BCL Jade. http://www.bcltechnologies.com/document/products/jade/jade.htm (2004)
8. Kovacevic, M., Diligenti, M., Gori, M., Milutinovic, V.: Visual Adjacency Multigraphs -

a Novel Approach to Web Page Classification. In: Proceedings of SAWM04 workshop,
ECML2004. (2004)

9. Litchfield, B.: PDFBox. http://www.pdfbox.org/ or http://sourceforge.net/ (2004)
10. The Apache Software Foundation: Digester. http://jakarta.apache.org/commons/digester/

(2005)
11. Hatcher, E., Gospodnetic, O.: Lucene in Action. Manning Publications (2004)
12. The Apache Software Foundation: Tomcat. http://jakarta.apache.org/tomcat/ (2005)
13. Coward, D., Yoshida, Y.: Java Servlet Specification. http://jcp.org/aboutJava/community-

process/final/jsr154/index.html (2003)
14. Deutsch, L.: Deflate compressed data format specification. Request for Comments No 1951,

Network Working Group (1996)
15. International Organization for Standardization: ISO/IEC 10918-1:1994: Information tech-

nology — Digital compression and coding of continuous-tone still images: Requirements
and guidelines. International Organization for Standardization, Geneva, Switzerland (1994)

16. Galperin, M.Y.: The Molecular Biology Database Collection: 2005 update. Nucleic Acids
Research 33(Database-Issue) (2005) 5–24

17. Schmeier, S., Hakenberg, J., Kowald, A., Klipp, E., Leser, U.: Text mining for systems
biology using statistical learning methods. In: ”3. Workshop des Arbeitskreises Knowledge
Discovery”. (2003)

18. Wang, Y., Phillips, I.T., Haralick, R.M.: Table detection via probability optimization. In:
Proceedings of the 5th IAPR Workshop on Analysis Systems (DAS 2002). (2002) 272–283

	Introduction
	CaptionSearch
	PDF Structure
	Text in PDF
	Images in PDF
	Finding the Caption
	Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

